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Abstract
Machining parameters play a critical role in the results of the turn-
ing process: cutting forces, dimensional accuracy, surface roughness,
tool wear, etc. Manufacturers offer recommendations for their tools,
but the complex relations between machining parameters make the
process optimization process not straightforward. Researchers usually
opt for performing experimental studies to optimize specific or multi-
ple outputs of these processes. However, this approach is costly and
time-consuming. Thus, in the present chapter, we show a methodol-
ogy to use Machine Learning, taking advantage of the vast amounts
of published data in the literature. Particularly, the chapter aims to
study the surface roughness attained in turning the Ti6Al4V alloy.
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1 Introduction
Turning is one of the main subtractive manufacturing processes used in indus-
try. Despite the availability of other options, turning usually starts with
cylindrical bars. Several metallic materials, such as aluminum, steel, and tita-
nium, can be turned. The process is of high complexity, and the cutting
mechanism involves high temperatures and mechanical loads. Accordingly, the
quality of the machined surface is one of the key issues. Moreover, surface
integrity is a critical aspect since it affects the functional performance of the
components in aspects such as fatigue, creep, corrosion, and wear resistance
[1].

Conventionally, researchers try to optimize machining processes using
experimental approaches based on the Design of Experiments (doe). In this
sense, they perform experimental plans, record the results and analyze them by
statistical methods [2]. However, this approach is costly and time-consuming.

In the last years, Artificial Intelligence (AI) and, mainly, Machine Learning
(ML) have emerged as valuable tools for analyzing large amounts of data in a
wide variety of use cases (Natural Language Processing - NLP [3], sports [4],
health [5]).

The sensorization of the Industry 4.0 environment and the need to
parameterize the performance of the equipment have led to the exchange of
information between intelligent objects for subsequent processing [6]. The need
for parameterization has encouraged the implementation of Machine Learning
(ML) techniques for the optimization of different industrial processes [7].

Ti6Al4V is the most generally used alpha-beta alloy [8] and, specifically,
it has been extensively used in research in machining. Titanium alloys are
difficult-to-cut materials because their increased strength and hardness gen-
erate high temperatures during machining and accelerate tool wear [9]. The
importance of titanium alloys can be understood when attending to their
applications in sectors such as aerospace, automotive, biomedical, military,
petrochemical, and sports [10]. Thus, there is a large number of published
studies that can provide experimental results of surface roughness in turning
the Ti6Al4V alloy to feed ML algorithms.

This chapter presents a guideline for developing a lab session in which the
students will learn how to use ML to optimize the parameters in titanium
alloys’ turning process using only published data. SMOreg, Decision Stump,
and Random Forest algorithms are compared, and the results are evaluated
using proper metrics.

2 Background
In turning, the material removal mechanism varies from rough turning to finish
turning [11]. In this sense, Figure 1 shows the ideal cutting of both processes.
The major flank plays an essential role in the cutting in rough turning. How-
ever, the cutting occurs in the region dominated by the tool nose radius in
finish turning.
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The quality of the surface is conventionally assessed by analyzing the rough-
ness of the surface. It is generally accepted that surface roughness is mainly
affected by the feed movement of the cutting tool and the tool nose radius.
This relationship was modeled by Knight and Boothroyd [12]. In this sense, the
theoretical arithmetical average value (Ra) can be calculated using Equation
1, in which f is the feed rate and re the tool nose radius:

Ra = 0.0321f2/re (1)

Fig. 1 Surface profile in rough turning (up) and finish turning (down). Permission granted
by Derani and Ratnam [11].

The ideal surface roughness cannot easily be achieved because of the com-
plexity of the actual turning process. Several factors affect the cutting process;
therefore, the results usually vary from the theoretical ones. In this sense,
external and internal loads (mechanical, thermal, chemical) may cause changes
(anomalies) to the workpiece during machining. Among these anomalies,
changes in surface topography are relevant [1].

Several researchers have tried identifying the main factors that may affect
the turning process. Those related to the tool, workpiece, cutting parameters,
and cutting phenomena are recognized among them. Some of these factors are
classified and listed in Figure 2, allowing us to understand the complex nature
of turning. However, when conducting turning experiments, feed rate [13] and
tool nose radius [14] are critical for surface roughness, thus confirming the
model established by Equation 1.

ML is an alternative approach to using traditional experimental and statis-
tical techniques for surface roughness prediction. ML models allow detection
patterns even in scenarios where there is no linearity between the features and
the variable to be predicted (target feature) [16]. These techniques are generally
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Fig. 2 Factors affecting the turning process [15].

divided into supervised and unsupervised. In the former supervised approach,
an annotated data set, either by human experts or automatically labeled, is
exploited. The data for training the model are called features, while the pre-
diction is called target. The ultimate objective is to discover hidden patterns
in the features that allow us to understand the relationship between them and
the target. Conversely, the unsupervised approach involves discovering clus-
ters, that is, closely related entries in an unlabeled data set using a certain
distance metric. This academic practice will focus on studying supervised ML
models.

As previously mentioned, to predict the target value, supervised ML mod-
els need to be trained using labeled data. In particular, the most popular ML
supervised models use different mathematical approaches to obtain these pat-
terns. In this line, regressors or the features of the Support Vector Machine
(SVM) system are used based on the intersection of hyper-planes. Another
usual technique uses Decision Trees. These methods generate branches based
on the input features. More in detail, each fork generates a new branch in which
a different feature is evaluated. These classifiers aim to divide the problem into
subgroups by a range of values defining a category. These previous approaches
can be combined, creating meta classifiers, as in the popular Random Forest
algorithm, which combines n Decision Trees [17].

ML techniques vary depending on the type of feature of the target: (i)
numerical or (ii) categorical. In the first case, the target feature corresponds to
real numerical values (e.g., measurements gathered from sensors, probabilities,
etc.), and the classifier must be configured to act as a regressor. Conversely,
when the target feature is categorical, the classifier is trained to detect patterns
characteristic of each category. This chapter focuses on the first scenario [18].
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3 Learning objectives
This session will help students:

• To be familiar with the evaluation of surface roughness in turning.
• To identify factors that potentially may affect surface roughness.
• To understand the foundations of ML.
• To compare various ML algorithms and evaluate their suitability using

proper metrics.
• To apply ML in a data set and extract information for defining the setup

and optimizing the results of the turning process.

4 Resources and organization
The session was specially designed for groups of 10-20 undergraduate engi-
neering students. A slot of 2 hours is recommended for developing the
session.

Hardware and software requirements are not highly demanding. Thus
they are adequate for implementation in conventional lab spaces. The main
requirements are listed below:

• Operating system: Windows 10 64 bits.
• Processor: Intel i3.
• RAM: 8 gb DDR4.
• Disk: 10 gb of free space.
• Software for data analysis: Weka1. This free available, portable, and easy-to-

use software provides a comprehensive collection of data analysis techniques
for preprocessing and modeling. Moreover, it provides visualization tools
such as the graphical user interface.

One computer per student is required since students will have to follow the
steps introduced by the instructors and then carry out their analysis.

There exist two alternatives to obtain data for the analysis. Firstly, to
gather the data set from published data. Secondly, to obtain the data set
by direct measurements on turned samples in the workshop. In addition, the
two strategies can be combined, as shown by García-Martínez et al [19] for
the material extrusion process, where data is gathered from the literature
and by direct measurements. The approach to follow in this lab session will
require only published data. However, this lab session might be enhanced,
including complimentary experimental turning tests and surface roughness
measurement.

The data set required for developing the session will be gathered without
making any distinction between the application of the process (i.e., finishing
or roughing)2. Based on that, the students will be provided with a data set
of experimental results published in the literature on turning off the Ti6Al4V

1Available at https://waikato.github.io/weka-wiki/downloading_weka, June 2023.
2Note that this chapter is just an introduction to the methodology, not an in-depth research

study.

https://waikato.github.io/weka-wiki/downloading_weka
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alloy. The data set3 proposed includes 138 values (103 for training and 35 for
testing) of the Ra output [20–22]. The machining parameters used for obtaining
these values included: cutting speed (m/min), feed rate (mm/rev), depth of
cut (mm), and an individual column for each cooling technique4. The output
is the Ra (µm). This data set will be used for training the model.

5 Session development
The instructor will present the background and learning outcomes to the stu-
dents and the following steps within the experimental pipeline in a practical
use case using Weka and a train data set. The practice is expected to last one
hour and a half. After that, each student will test their knowledge with the
test data set.

The ml process is divided into six fundamental stages: (i) data anal-
ysis, (ii) feature engineering, (iii) feature selection, (iv) classification, (v)
hyperparameter optimization, and (vi) evaluation.

5.1 Data analysis
Data analysis represents the initial and essential step to ensure the high quality
of the input data. The analyses consist of:

• Feature mapping. Categorical and nominal features are transformed into
numeric features. Accordingly, ml models exploit numerical values to infer
relevant behavior patterns based on distances, error minimization, cor-
relations, etc. To perform feature mapping with spreadsheets, additional
numerical columns must be created for each textual one, considering the
ordering of the possible values.
Using Weka, students must click the Explorer option and select the data
set to be loaded (in csv or arff format, the latter used by Weka). In the
Filter functionality, a list of possible filtering options will be displayed, as
shown in Figure 3. The filtering options must be selected under the path
filters/unsupervised/attribute path. Typically StringToNominal or
OrdinalToNumeric are exploited. If the option StringToNominal is used,
the data set will be saved using the Save option in arff format. Note that
the unsupervised filter is unrelated to the classification task. It executes a
specific rule that transforms a column from one type to another. Finally,
students must open the file and modify the features to numeric format as in
the Listing 1.

• Interpolate missing data. Several options exist to ensure that
the input data have no empty values: average, minimum, maxi-
mum, etc. The selection of the strategy depends on the classifica-
tion problem. Particularly, the ReplaceMissingValues filter in the path
filters/unsupervised/attribute replaces the missing values with the

3Available at bit.ly/3CeWoD3, June 2023.
4Most studies do not include specific details of the tools. Thus, it is sometimes impossible to

have relevant data such as tool nose radius or other turning parameters.

bit.ly/3CeWoD3
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average. Other replacements than the average can be obtained with a
formula in a spreadsheet.

• Homogenize experimental data. It ensures the input data is aligned
among the different sources used regarding feature name, normalization, or
binarization. Firstly, the same column name must be used in a spreadsheet
or csv file. Note that the transformations must be applied in all new data
sets students create.

Fig. 3 Weka interface to choose a feature transform approach.
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Listing 1 Nominal to numeric transformation.

@attribute ‘Cutting speed (m/min)’ {40,60}
@attribute ‘Cutting speed (m/min)’ numeric

5.2 Feature engineering
In data science, the final goal is to generate knowledge from the data [23],
i.e., engineer features: accumulated values (e.g., from time series), the differ-
ence between two features, statistical values (e.g., quartiles). This process also
applies to changes in the existing data, for example, by creating a new feature
by establishing ranges for the values of another feature. These changes can be
done through simple functions created on spreadsheets at the end.

5.3 Feature selection
Once the input data were analyzed and the features were engineered, it was the
turn to select the most representative features to train the ml models. There
exist two main options in the literature: (i) statistical thresholding and (ii)
model-based selection. Both approaches allow to the detection of non-duplicate
feature values and highly correlated features concerning the target and are
complemented by visual representation of the most relevant features. Moreover,
in the model-based selection approach, a model is used to infer from a training
subset the most relevant features. It serves a dual purpose: (i) reduction of the
training samples, which results in more efficient models, and (ii) classification
performance improvement by removing unrelated or misleading features that
may lead to incorrect predictions.

Initially, in Select attributes - Weka tab, stu-
dents must select the Ranker method as Search
Method under the path attributeSelection/Ranker and
CorrelationAttributeEval as Attribute Evaluator under the path
attributeSelection/CorrelationAttributeEval. The latter evaluator
shows results between -1 and 1. The closer to the extremes, the more
correlated the features are with the target and, therefore, more representative.

For the second analysis, students must use ClassifierAttributeEval, as
indicated in Figure 4. A tree-based classifier such as trees/RandomForest
offers competitive performance in most scenarios. This evaluator uses a mea-
sure similar to correlation. However, its values will not be bounded. In this
sense, the greater the absolute value’s relevance. To launch the test, students
must select the target feature from the list displayed above the Start but-
ton, by default the last column of the data set, and press this button. Given
the results, students can move to Preprocess tab and remove certain features
during exportation using the Remove button.
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5.4 Classification
The models used for classification will be selected depending on the data’s
nature and the experimental plan’s needs or limitations. Moreover, baseline
models are used for comparative purposes. In this lab practice, the following
algorithms will be exploited5:

• SMOreg6 [24]. It is a regression implementation of SVM.
• Decision Stump (DS7) [25]. It is a basic tree model.
• Random Forest (RF8) [26]. It is a more complex tree-based model since

it is composed of n trees.

Fig. 4 Weka interface to choose a feature selection approach.

5However, the Weka tool provides numerous types of classifiers, the student is encouraged to
explore other alternatives.

6Available at https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SMOreg.html,
June 2023.

7Available at https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/DecisionStump.html,
June 2023.

8Available at https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html,
June 2023.

https://weka.sourceforge.io/doc.dev/weka/classifiers/functions/SMOreg.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/DecisionStump.html
https://weka.sourceforge.io/doc.dev/weka/classifiers/trees/RandomForest.html
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To test classifiers on the experimental data set, students must select
the Classify tab and choose the model by pressing the Choose button.
The models available are in funtions/SMOreg, trees/DecisionStump, and
trees/RandomForest.

5.5 Hyperparameter optimization
The last process prior to training and testing consists of identifying the classi-
fiers’ optimal hyperparameters. Accordingly, each classifier model has default
initialized attributes that can be modified to improve performance. In line with
the above, a subset of the complete data set is extracted to avoid bias and dif-
ferent configurations of the classifiers are tested. To select the parameters of the
classifiers, students should pick the model on the right of the Choose button. A
very common parameter to modify in the rf classifier is the nunIterations,
as can be seen in Figure 5. In data sets larger than the one used, for example,
its effect and improvement in the results are usually notable when iterating n
times in search of the optimal configuration. It must be considered that the
execution time and resources consumed will increase the larger this value is.

5.6 Evaluation
Traditional evaluation methods divide the data set into partitions for training
and testing, like 50 %-50 %, 60 %-40 %, 70 %-30 %, or 80 %-20 %. How-
ever, this approach only ensures that the entire data set is tested and that
the chosen partitions do not produce biased results in the evaluation metrics.
Consequently, the most appropriate method for evaluation to avoid over-fitting
and minimize over- and underestimation is cross-validation [27].

Cross-validation uses different partitions of the experimental data set over
multiple iterations for training and testing the models. The latter creates a
more realistic evaluation plan. The traditional 10-fold cross-validation tech-
nique shuffles the experimental data set and divides it into segments of equal
length, using 9 for training and 1 for testing, without overlapped testing par-
titions. This process is repeated 10 times. In the end, the overall evaluation
metrics are averaged.

To experiment with Classify tab following the train/test split procedure,
Percentage split must be selected. The latter value corresponds to the part
of the data set dedicated to training, and the rest will be used for testing. If
the experimental data set is split into train and test partitions, students can
use the Supplied test set option. In addition to the fact that both data
sets must match in terms of columns, column names, and data typology, it is
recommended that both the train and test files have been previously saved in
arff format and loaded into Weka.

To use cross-validation, students must select Cross-validation and
choose the number of folds. Exploit the Use training set option to check
that the data set is not randomized. If, when running Weka with this option
enabled, the results are far from 80 %, it means that the model cannot find pat-
terns even when trained and evaluated with the same data set. To launch a first
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Fig. 5 Weka interface to modify the hyperparameters of the RF model.

test, choose the target variable from the list displayed under More options
and press the Start button.

Since the ML models will be used as regressors, the most appropriate eval-
uation metrics are the relative absolute error (RAE, Equation 2) and the mean
absolute percentage error (MAPE, Equation 3) instead of the accuracy, pre-
cision, and recall computed when these models are used as classifiers. The
models act as regressors because the target value is numeric and may present
infinite feasible values.

RAE(%) = 100

∑n
i=1|fi − ai|∑n
i=1|a− ai|

, being fi forecast values, and ai actual values.

(2)
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MAPE(%) =
100

n

n∑
i=1

|fi − ai
ai

| (3)

The rae metric measures the model’s adaptability regarding feature-target
value changes. More in detail, it computes the average-percentual deviation
between the predicted value and the expected one. Moreover, we are using the
MAPE metric since the surface roughness values are expected to be highly
sparse. More in detail, the MAPE metric assesses the same deviation (i.e.,
between predicted and actual values) but is normalized to the actual values
rather than the average as in the case of the RAE.

The correlation variable and RAE will be printed in the display win-
dow by default. To select new metrics, click on the More options button
and Evaluation metrics as shown in Figure 6. Note that the MAPE met-
ric is not included. Therefore, students must use a spreadsheet to calculate
it. To export the prediction in the Classifier evaluation options win-
dow, click on Output predictions and select csv. When executing, the id
of the instance, the real value, the predicted value, and its difference will be
printed on the screen, each parameter separated by commas. The student can
select this data, copy and paste it to a csv file and open it with a spreadsheet
application.

The results using the cross-validation method with the proposed data sets
are presented in Table 1. The behavior of RF is superior in all metrics. RF
correlates 0.96 with the surface roughness target feature. Moreover, a MAPE
value of 19.82 % represents a deviation between actual and predicted values
lower than 20%. In contrast, the 31.12 % of RAE metric is expected because
the actual and predicted measures are not close to the mean. For this reason,
the MAPE measure is a more accurate metric in this type of problems.

6 Outcomes

Table 1 Result values for the selected ML models using 10-fold cross-validation technique.

smoreg ds rf
Correlation 0.84 0.88 0.96
rae (%) 55.99 53.56 31.12
mape (%) 36.28 35.63 19.82

Once the instructors have delivered the guidelines to the students, they are
expected to use the test data set. Students must use the original data set to
train the model and the test data set to validate it using Supplied test set
option. Verify that this data set has the same column names and types, or
solve any problem following the steps described in Section 5.1. The next step
will be to analyze the information and select the relevant features. Moreover,
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Fig. 6 Weka interface to choose the evaluation metrics.

they must evaluate the three proposed classification models using the evalu-
ation metrics provided by Weka and including the RAE and MAPE results
obtained. They are expected to discuss performance differences among the
classifiers. Students can improve the latter performance using hyper-parameter
tuning and checking their effect on the evaluation metrics. The results with
all features and with the default configuration are shown in Table 2. As in the
same case of cross-validation, RF performs better than the rest of the clas-
sifiers. The student shall make as same discussion analyses as in the above
experiment.

Table 2 Result values for the selected ml models using Supplied test set option.

smoreg ds rf
Correlation 0.87 0.88 0.98
rae (%) 48.45 56.86 32.32
mape (%) 21.47 25.58 12.69

7 Deliverable and assessment
At the end of the session, students must deliver a summary of the techniques
and tools used for data analysis, feature engineering, and selection (e.g., inter-
polate missing data, homogenize experimental data, etc.). Additionally, this
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summary must include the features engineered and selected and their rele-
vance. Results must be displayed in a table containing the correlation values,
the RAE, and the MAPE metrics for each classifier used. Moreover, an addi-
tional table with the results obtained with hyper-parameter tuning must be
included. A deliverable template is provided to the students9.

8 Conclusions
The present chapter provides an example of the use of ML to analyze published
data to optimize the turning conditions of Ti6Al4V alloy. The main conclusions
of the chapter are the following:

• The main mechanisms that generate the surface roughness in turning are
well known. The ideal surface roughness profile primarily depends on the
feed rate and tool nose radius.

• The actual surface roughness differs from the ideal values. Thus, the setup
for turning cannot be arranged using only feed rate and tool nose radius.

• ML is suitable for analyzing complex relationships between multiple factors
and outcomes, especially when large data sets are available.

• The students will learn how to use and apply ML methods in manufacturing.
Specifically, they will create a setup for the turning process of Ti6Al4V alloy
using as the outcome, the surface roughness.
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